Neural Networks for Real-time Pathfinding in Computer Games
نویسندگان
چکیده
One of the greatest challenges in the design of realistic Artificial Intelligence (AI) in computer games is agent movement. Pathfinding strategies are usually employed as the core of any AI movement system. The two main components for basic real-time pathfinding are (i) travelling towards a specified goal and (ii) avoiding dynamic and static obstacles that may litter the path to this goal. The focus of this paper is how machine learning techniques, such as Artificial Neural Networks and Genetic Algorithms, can be used to enhance an AI agent’s ability to handle pathfinding in real-time by giving them an awareness of the virtual world around them through sensors. Thus the agents should be able to react in real-time to any dynamic changes that may occur in the game.
منابع مشابه
Pathfinding in Computer Games
One of the greatest challenges in the design of realistic Artificial Intelligence (AI) in computer games is agent movement. Pathfinding strategies are usually employed as the core of any AI movement system. This report will highlight pathfinding algorithms used presently in games and their shortcomings especially when dealing with real-time pathfinding. With the advances being made in other com...
متن کاملRealistic Agent Movement in Dynamic Game Environments
One of the greatest challenges in the design of realistic Artificial Intelligence (AI) in computer games is agent movement. Pathfinding strategies are usually employed as the core of any AI movement system. This paper examines pathfinding algorithms used presently in games and details their shortcomings. These shortcomings are particularly apparent when pathfinding must be carried out in real-t...
متن کاملRobust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...
متن کاملA Hierarchical Task Network Planner for Pathfinding in Real-Time Strategy Games
In this paper, we propose an automatic mechanism of Hierarchical Task Networks (HTNs) creation for solving the problem of real-time path planning in Real-Time Strategy (RTS) Games. HTNs are created using an abstraction of the game map. A real-time heuristic search approach called Learning Real-Time A* (LRTA) is applied to execute the primitive tasks of the HTNs. The main purpose of using a HTN ...
متن کاملReal-time Heuristic Search for Pathfinding in Video Games
Game pathfinding is a challenging problem due to a limited amount of per-frame CPU time commonly shared among many simultaneously pathfinding agents. The challenge is rising with each new generation of games due to progressively larger and more complex environments and larger numbers of agents pathfinding in them. Algorithms based on A* tend to scale poorly as they must compute a complete, poss...
متن کامل